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$ Office of Energy Management, University of Alberta, Edmonton, Alberta, T6G 2H1, 
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9: Now at Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan 

Receivcd 9 November 1978 

Abstract. High-field series expansions are presented for the three-state Potts model on the 
square, simple cubic and body centred cubic lattices. Estimates of critical exponents for two 
dimensionsarep = 0.1064*0.0005, y ' =  1.50*0.04and S = 15,5* 1.5. It isplausible that 
the three-dimensional model undergoes a second-order phase transition with exponents 
p =0.203*0.004, y ' =  1.18*0.05 and S =7*0*0.3. 

1. Introduction 

The three-state Potts model can be characterised by the Hamiltonian 
N N 

x = - J C S ~ . S ~ - H  +H, 1 S: 
(ii) i = l  i = l  

where si is a unit vector which is permitted to point in one of only three directions 
making angles of 0 ,2x/3  and 47r/3 radians respectively with the x axis. Other symbols 
have their usual meaning. The three-state Potts model was introduced by Domb 
(Domb 1974) and should perhaps be called the 'Domb model'. It was generalised to an 
arbitrary number of states per site by Potts (1952). 

Like the Ising and XY models the three-state Potts model seemed for many years to 
be of primarily theoretical interest. Recently Mukamel et a1 (1976) have shown that 
cubic ferromagnets with three easy axes subject to a moderate magnetic field along the 
[lll] direction should behave like the three-state Potts model (see also Kim et al 
(1975)). Barbara et a1 (1978) have made an experimental study of one such substance, 
Dy Alz. The three-state Potts model should also be realised in adsorbed monolayers of 
rare gas molecules on substances such as graphite (Alexander 1975, Berker eta1 1978). 

Figure 1 is a schematic illustration of the phase diagram of the model as previously 
discussed by Straley and Fisher (1973) and others. Three wings parallel to the 
temperature axis each represent a coexistence surface between two of the ordered 
phases; these wings meet in a line of triple points OQ. Each of three webs represents a 
coexistence surface between one of the ordered phases and the disordered or 
paramagnetic phase; two webs and a wing also meet in a line of triple points, tiQ. The 
free edges of the wing and of the web coexistence surfaces are lines of critical points. 
The points t i  are tricritical points and Q is a quadruple point. 

0305-4470/79/091605 + 18$01.00 @ 1979 The Institute of Physics 1605 



1606 S Miyashita, D D Betts and C J Elliott 

Figure 1. Schematic phase diagram of the three-state Potts model. Heavy full curves are 
lines of triple points where three coexistence surfaces meet. Coexistence surfaces terminate 
in lines of critical points indicated by broken curves in the diagram. Q is a quadruple point 
and t, are triple points. 

A fundamental and controversial question concerning the three-state Potts model in 
three dimensions is whether the zero-field transition is first or second order. In other 
words do finite webs exist or do the three tricritical points ti coalesce with Q, which then 
becomes a special symmetrical tri-critical point? Mean field theory or Landau theory 
(Straley and Fisher 1973) predict a finite web and thus, at H = 0, a first-order transition 
at Q independent of the dimension d of the lattice. On the other hand Baxter (1973) 
has proved that for d = 2 the transition is continuous and thus Q is a tricritical point. 

Approximate renormalisation-group calculations by Golner (1973) for d = 3 and in 
for €-expansion by Amit and Shcherbakov (1974) predict a first-order transition. Levy 
and Sudano (1978) also predict a first-order transition for d = 3 using the cluster 
variation method. The question is difficult to settle experimentally but Barbara er a1 
(1978) report measurements favouring a first-order transition. On the other hand 
Burkhardt er a1 (1976) find a second-order transition via the Kadanoff variational 
method. 

Analysis of exact series expansions can yield accurate estimates of critical tempera- 
tures, exponents and amplitudes provided the phase transition is second order, However, 
the method of series expansions is not well suited to the problem of ascertaining the 
form of the phase transition. Using high-temperature series expansions Ditzian and 
Oitmaa (1975) concluded that the phase transition of the three-state Potts model for 
d = 3 is first order. In contrast Straley and Fisher (1973), Straley (1974) and Enting 
(1974a), relying mainly on low-temperature series expansions, favour a second-order 
transition and report estimates of the critical exponents. 

In this paper we study the three-state Potts model in two and in three dimensions 
through both high-field and low-temperature expansions. In § 2 we discuss the method 
of derivation of the high-field expansion of the free energy of the three-state Potts 
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model on bipartite lattices. For the BCC lattice we have obtained the first nine high-field 
polynomials in the series for the free energy and for the square and simple cubic lattices 
the first eleven polynomials. 

In § 3 we analyse the high-field magnetisation expansion and low-temperature 
expansions for the spontaneous magnetisation and initial susceptibility on the square 
lattice, primarily by Pad6 approximant techniques. Because the critical point is exactly 
known we obtain quite precise estimates for the critical exponents and amplitudes. In 
0 4 we consider evidence concerning the nature of the phase transition. In § 5, assuming 
the transition to be second order, we obtain estimates for the critical (or tricritical) 
temperatures, exponents and amplitudes for the simple cubic and body centered cubic 
lattices. 

2. High-field series expansions for the free energy 

In this section we describe a method for obtaining a high-field expansion for the 
three-state Potts model for the special case of the ‘non-ordering’ field, H ,  of ( l ) ,  equal 
to zero. The method is an adaptation of the shadow lattice method of Sykes et a1 (1965) 
for the spin-; Ising model and applies to bipartite lattices. Introducing the Boltzmann 
factors z = exp(-3PJ/2) and y = exp(-3PH/2) the expansion of the dimensionless free 
energy per site is of the form 

f = C L ( Z ) Y n  (2) 
n 

where n is the number of overturned spins and the coefficients L,(z)  are the high-field 
polynomials. 

Enting (1974a) obtained the first five high-field polynomials for the three-state Potts 
model for non-zero H ,  on the sc, BCC and FCC lattices. Subsequently Enting (1974b) 
obtained the first nine and eleven high-fieid polynomials for H ,  = 0 on the square and 
honeycomb lattices respectively. Enting’s work also made use of the shadow lattice 
method of Sykes et a1 (1965) but in a somewhat different formulation from ours. 

To obtain the coefficient of y n z b  for the spin-; Ising model it is necessary to know 
only the total number of strong embeddings in the lattice of interest of all graphs of n 
vertices and 6 edges. For the Potts model the graphs have to be further classified. 

Consider a particular graph g formed by turning n spins through an angle 2 ~ / 3  
radians away from the fully aligned state. The corresponding Boltzmann factor is 
identical to the Ising Boltzmann factor for the graph, y n ~ q n - 2 6 ,  where q is the 
coordination number of the lattice and qn - 26 is the number of ‘broken’ bonds around 
the perimeter of the graph. Now turning a subset of the n spins in g through an 
additional angle of 2 ~ / 3  radians does not affect the external or Ising Boltzmann factor 
of the graph, but does give an additional internal or Potts Boltzmann factor P(g) ,  due to 
the breaking of the internal bonds. For example the Potts factors for a few of the 
simplest graphs are: P(-) = 2(1 + z ) ,  P ( 0 )  = 2(1  +6z2+z4)  and P(O11) = 
2 ( 1 + 6 ~ ~ + 9 ~ ~ + 9 2 ~ + 6 z ~ + z ~ ) .  

The calculation of the Potts Boltzmann factors P ( g )  for more complicated graphs 
is greatly simplified by using the first and second Mayer theorems appropriately 
expressed. If g consists of two disconnected parts g l  and g2 it is immediately obvious 
that 

P k )  = P(gdP(g2) (3) 
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which is the first Mayer theorem. The second Mayer theorem applies to trees, that is 
graphs with articulation points. 

Consider a graph g formed from two graphs g, and g 2 ,  by identifying one of the 
vertices of gl with one of the vertices of g2, all other edges and vertices remaining 
distinct. Such a point is an articulation point of the resulting graph, which is a tree 

Table 1. Zero-field low-temperature series for the three-state Potts model 

Simple cubic lattice BCC lattice 

Spontaneous Initial Spontaneous Initial 
Degree magnetisation susceptibility magnetisation susceptibility 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

1 
0 
0 
0 
0 
0 

-3 
0 
0 
0 

-18 
-18 

42 
0 

-135 
-270 

477 
648 

-1980 
-2988 

4140 
14052 

-21690 
-52920 

55020 
201852 

-162774 
-914538 

555750 
3229524 

-1188399 
- 13301370 

1402686 
52334268 

0 
0 
0 
0 
0 
0 

0 
0 
0 

54 
54 

-126 
0 

607: 
1215 

-2092; 
-2916 

44 

10728 
17928 

-23760 
-83232 
145827 
367740 

-372294 
-1482948 

1350054 
7376076 

-445591 8 
-27643086 

11261821: 
124201944 
- 1364 1 102 

-511206966 

1 
0 
0 
0 
0 
0 
0 
0 

-3 
0 
0 
0 
0 
0 

-24 
-24 

54 
0 
0 
0 

-252 
-504 

900 
1152 

-1452 
-3312 
-7344 
11484 
35856 

-30132 
-50184 

264 
-113160 

175464 
712176 

-319098 
-1997856 

334320 
341856 

1211472 
13301 112 
-2785392 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

72 
72 

-162 
0 
0 
0 

1134 
2268 

44 

-4050 
-5184 

6750 
0 

19872 
44064 

-68634 
-215136 

186462 
308124 
51489 

848700 
-1305936 
-5330304 

2493945 
15222384 
-201 1284 

-12187773 
-119221164 

26622792 
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graph. Now if we fix the orientation of the spin at the articulation point the Potts 
Boltzmann factor for gl is tP(gl), and for g2 is iP(g2). But this special spin may have 
either of two perturbed orientations, so the second Mayer theorem becomes 

P(g) = t P ( g l ) P ( g * ) .  (4) 

For the r-state Potts model the Mayer theorems remain valid except that the factor i in 
(4) becomes (r - l)-'. 

For example P(0 ) =  2(1+2)(1 + 6 z 2 + z 4 ) .  In general if g2 consists of a Cayley 
tree (a graph with no closed circuits) of b' bonds then 

P(g) = 2( 1 + z)b'P(gl). 15) 

This equation clearly remains valid if n 2  Cayley trees are attached to gl at n3 .s n2 
different articulation points. 

Equation (5)  has proved very useful in practice and leads to a classification scheme 
for graphs associated with the Potts model. We define a structure index x, distinguish- 
ing all star graphs and star trees, those which contain no Cayley trees as subgraphs. The 
index, x, for other graphs is then identical to that of the graph obtained by deleting or 
'pruning' all Cayley trees. Pure Cayley trees are assigned index x = 1.  Other graphs are 
ordered first by the number of vertices of gl then arbitrarily. For example 

t (n) = (w) = (Fty) = 

Because of (5) it is not necessary to obtain the strong embedding lattice constant of 
each graph separately, but only the total number of strong embeddings, [ U ,  b, X I ,  for all 
graphs with n vertices, b edges and structure index x. Then the high-field polynomials 
are given by 

L , ( z )  = 2 1 [n,  6 ,  x]P,(z)(l + . Z ) ~ ~ Z ' " - ~ ~ .  
6.x 

To determine [n,  6, x] we adapt the code method of Sykes et a1 (1965) with which we 
assume familiarity. For illustrative purposes we specialise to the square lattice, 
although the method applies to any bipartite lattice. 

First on the shadow lattice we construct all inequivalent graphs g' through to n' = 5 
vertices for the square and simple cubic lattices and to n' = 4 vertices for the BCC and 
honeycomb lattices. The shadow lattice graphs are represented by their adjacency 
matrices M(g') ,  a record is kept of the number of vertices, the strong embedding lattice 
constant is found and the code is constructed. 

For the example of the shadow lattice graph 1 on the square lattice a ' (  1)  = 2, 
[ [ ]  = 2 and M (  f )  = (yh). There are four vertices on the other sub-lattice, the A 
sub-lattice, which are neighbours to only one of the above two vertices on B and two on 
A which are neighbours of both B vertices. Thus the code is ( 6 , 4 , 2 )  exactly as for the 
Ising model. 

The kth shadow lattice graph g; has strong lattice constant [g;] and code 
(A, cy, p, . . . ) k .  Hence the partial generating functions of Sykes et a1 (1965) are 
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Expansion of the shadow lattice codes effectively gives us the required lattice 
constants on the original lattice, [n, b, XI. Incidentally, we do not need to count directly 
the [n ,  6, 13 if we make use of the sum rule 

Thus through the code method we have 

[n,  b , x ] = - * C n - n , - b + b , X u C b - b ' X [ n ' ,  b',X]. (8) 

Let us return to our x = 2 example on the square lattice. There are several graphs on 
the original lattice with n = 6 containing the basic star, the square. However, we have 
immediately from (8) that the sum of all such strong lattice constants is 

[ 6 , 5 , 2 ]  = -6C1 x qC1 x 1 = -24. 

The procedure for obtaining the strong embeddings [a, 6, x ]  has been computerised. 
The only remaining problem is to obtain the Potts Boltzmann factor for the stars. 

The number of stars realisable on the lattices studied with eleven or fewer vertices is 
small enough that the required P(x)  could all be computed manually. In practice they 
were computed by a simple program. 

In the Appendix are listed the first nine high-field polynomials for the BCC lattice 
and the first eleven polynomials for the simple cubic lattice. For each lattice the first five 
polynomials agree with the results of Enting (1974a). As a further check we have 
obtained the first nine high-field polynomials on the square and honeycomb lattices, 
which agree with the results of Enting (1974b). The tenth and eleventh high-field 
polynomials on the square lattice, also listed in the appendix, are new. 

3. Critical behaviour of the Potts model on the square lattice 

Although mean field theory and Landau theory predict a first-order transition for the 
three-state Potts model in two dimensions (Straley and Fisher 1973) it is now known 
that the model has a second-order transition (Baxter 1973). Thus the reduced 
spontaneous magnetisation 

mo B, (1 - z/z,)'. (9) 
The critical point is also known exactly for the square lattice: zc = 0.36602 , . . . 

We have not added to the known coefficients in the low-temperature expansion for 
the spontaneous magnetisation and initial susceptibility of the Potts model on the 
square lattice. However, we have made a more extensive Pad6 approximant analysis 
than previous investigators. (The series are too irregular for ratio analysis.) Knowing zc 
exactly, estimates of /3 can be obtained: ( a )  from evaluation of Pad6 approximants to 
(z, - z)(d/dz) In mo at z = z,, ( b )  from a plot of residues versus poles of Pad6 approxi- 
mants (d/dz) In mo(z) or ( c )  from a plot of mean values of poles versus p in Pad6 
approximants to m ~ " ' .  

By method ( a )  we estimate P = 0.106*0.002. The results of methods ( b )  and (c) 
are displayed in figure 2. The position of poles and corresponding residues of high 
degree, central Pad& approximants to (d/dz) In mo(z)  are indicated by circles. The 
lower curve is the best straight line through these points, and yields an estimate of 
P = 0.10652. The upper curve marks the mean value of poles of Pad6 approximants to 
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0.3660 

zc 
0.3655- 

0,3650 

1611 

- 

I I I I I 
0,103 0 10L 0,105 0 106 0.107 

P 
Figure 2. Relation between estimates of z, and p for the three-state Potts model on the 
square lattice using high-degree central Pad6 approximants. Circles locate poles and 
residues of approximants to (d/dz) In mo(z ) ;  the lower curve is the best straight line through 
these points. The upper curve represents the mean value of poles to m ~ ” ’ .  

mi”’. The poles, excluding defective Pad6 approximants, are closely grouped with a 
mean deviation of approximately *0.0001 independent of p in the range illustrated. By 
this method, (c), we estimate p = 0,10636. As our overall best estimate we take 

= 0.1064 z t  O*OOO5. 

Previously, by less extensive analysis, Straley and Fisher (1973) estimated p = 
0.103 f 0-010 and Enting (1974b) estimated p = 0,105 f 0.005. Method (c)  also yields 
the amplitude estimate, B, = 1.200 f 0.001, 

The initial susceptibility series is less well behaved than the spontaneous magnetisa- 
tion. Nevertheless, we can estimate y’ and C: in 

(10) 

by the same methods applied to the mo series. We find y‘= 1.50*0.04 and C: = 
0.0050 f 0.0002. 

Using the estimate of a = 0.296zt 0.002 (assumed = a’) from Zwanzig and 
Ramshaw (1977) and our estimate of p and y‘,  we can test the Rushbrooke inequality. 
Thus a’+ 2 p  + y’ = 2.008 f 0.04, not only satisfying the inequality but also in 
agreement with scaling which requires the right side to be 2. Alternatively, assuming 
the validity of scaling, and using the more precise estimates of a and p we find 
y = y ’ =  1.491 ztO.002. 

Next we analyse the high-field series, where we have eleven terms, two more than 
Enting (1974b). Again we assume a simple power law singularity of the form 

,yo = c: (1 - Z/ZJY’ 

m ==;D,(I - y)”’. (11) 

We apply four different techniques to determine S both in this section and below for 

(1) Given the value of zc residues of Pad6 approximants to (d/dy) In m(z,, y )  are 
the three-dimensional series: 

estimates of 8-l. 
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(2) Knowing that y c =  1 find poles and residues of Pade approximants to 
(dldy) In m(z ,  y )  for a set of z values. The value of z which yields poles centred at y = 1 
is then an estimate of zc and the corresponding residue an estimate of a-'. 

(3) The method used by Gaunt and Sykes (1972) for the king model and by Enting 
(1974a) for the Potts model consists of studying the coefficients in  the expansion 

(12) 

For z = z,, assumed known from other analysis, e,, -a-'. On a l / n  plot the coefficients 
moreover must approach S-' with zero slope. Thus by varying z until zero slope is 
achieved this method also serves as a (rather imprecise) method of estimating z , .  

(4) Assuming zc  to be known, vary S until poles of Pad6 approximants to m (zo Y ) - ~  
yield y c  = 1 as a central estimate. 

We have used all four methods on the high-field magnetisation series for the square 
lattice, and they can also be applied to the high-field susceptibility series, where the 
exponent S is replaced by -S/(l-S). However, for the square lattice we concentrate 
on the magnetisation series. The final estimates using each of the above methods are 
listed in table 2. 

-y(d/dy) In m = Z  enyn. 

Table 2. Estimates of the critical properties of the three-state Potts model on the square 
lattice from analysis of high-field magnetisation series. Underlined numbers are input 
values. 

s 0 0 Method Y C  2, 

1 0~995?=0~005 0,36602 16.410.4 
2 1ooo 0,364 * 0.001 17.010.6 
3 n.a. 0.365*0.001 16.0* 0.5 
4 .~ 1 .ooo 0.36602 15.5 *0,3 

There is quite a spread among mean estimates by different methods. The 'error 
bars' in table 2 indicate the scatter of estimates within each method and neglect 
systematic errors. Note that method 1 underestimates y, by half a percent while 
methods 2 and 3 underestimate z,. Thus we place greatest reliance on method 4 in 
which the correct values of y c  and zc are imposed. We adopt the overall estimate of 
6 = 15.5* 1-5.  From method 4 we also obtain D, = 1.02*0.01. 

Using our above estimates of ,L? and S and that of Zwanzig and Ramshaw (1977) for 
a we find a + p ( S  + 1) = 2.05 *0-15 in agreement with the scaling result that the right 
side is 2. Alternatively using the scaling relation and the estimates for cy and p we find 
S =  15.02*0*02. Thus we are tempted to believe that 6 = 15 exactly, as in the 
two-dimensional Ising model. Enting (1974a) using series of degree nine also 
concluded that S = 15. 

The low-temperature specific heat series are not sufficiently well behaved to be 
amenable to the usual methods of analysis. 

4. Nature of the transition in three dimensions 

We have attempted to determine whether the phase transition is of first or second 
order. We assume the dimensionless spontaneous magnetisation to behave in the 
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vicinity of the phase transition as 

Accordingly we have examined the series for Am = ma-Bo for a set of values of 
0 . 0 ~ B ~ S 0 . 4 .  The results of this analysis are summarised in table 3 for the simple 
cubic lattice. The 'errors' are simply an indication of the degree of convergence among 
the high degree central Pad6 approximants. It appears that the convergence is 
approximately equally good for all values of Bo in the range examined, so this method 
cannot be used to determine whether the transition is first or second order. Similar 
results hold for the BCC lattice. 

Table 3. Estimates of zc  and p from poles and residues of PadC approximants to the series 
for (d/dz) In Am where Am = m o ( z ) -  Bo on the simple cubic lattice. 

0.00 0.5790 * 0.003 0.21 5z0.02 
0.10 0.5777*0.007 0.22 * 0.04 
0.20 0.5765*0.005 0.26 * 0.03 
0.30 06732*0.003 0.33rt0.02 
0.40 0.5730*0.005 0,33*0.03 

Similar Pad6 approximant studies of the spontaneous magnetisation series on the 
square lattice, for which it is known that the transition of the three-state Potts model is 
second order (Baxter 1973) are no more definitive than the three-dimensional studies. 

It would be still more difficult to estimate the magnitude of a zero-field latent heat. 
Both high- and low-temperature series for the entropy would have to be used, the latter 
being quite badly behaved. Moreover, even if there is no latent heat, as in the Ising 
model, the energy and entropy probably have vertical slopes at the critical point making 
a continuous transition look very much like a first-order transition. 

There remains the possibility of determining the nature of the transition using 
high-field series. For the square lattice the transition temperature of the Potts model is 
known exactly (Potts 1952). Accordingly we have studied the series in y of m ( z ,  y )  for 
various values of z .  For z d 0.82, evaluation of Pad6 approximants to the series for 
m'" (6 = 15) reveals m going smoothly to a constant at y = 1 as it should. Similarly 
for z a 1 . 5 ~ ~  Pad6 approximants to m go smoothly to zero. In both ranges of z the 
various Pad6 approximants yield very consistent values of m for all 0 S y S 1. However 
in a region 0.8 z c d  z S 1.5 zc and 0 .6s  y S  1, various Pad6 approximants to the series 
for either m or ma- '  give very scattered estimates for m and little can be said about the 
location or the nature of the phase transition. 

In three dimensions we have an approximate value of zc from the spontaneous 
magnetisation series and consequently an approximate value for S (see below) from the 
high-field magnetisation series. The same type of analysis of the high-field magnetisa- 
tion series in three dimensions gives behaviour qualitatively the same and quantitatively 
neither better nor worse than in two dimensions. 

In summary, from Pad6 approximant analysis of the high-field series and of the 
low-temperature series we have been unable to determine the nature of the phase 
transition in the three-state Potts model in three dimensions. We feel that previous 
attempts by other authors, referred to in the introduction, have likewise failed to 
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determine the nature of the transition. In the remainder of this section, assuming the 
transition to be second order, we determine the critical temperatures, exponents and 
amplitudes of the Potts model on the simple cubic and BCC lattices. 

5. Critical behaviour of the three-dimensional Potts model 

To obtain a first approximation to the critical properties of the Potts model in three 
dimensions we have found poles and residues of high degree, central Pad6 approxi- 
mants to (d/dz) In mo(z)  and (d/dz) In ,yo(z) on both the simple cubic and BCC lattices. 
Because of the high degrees of these series, 33 and 41 respectively, the Pad6 approxi- 
mants have many poles. In some of these, non-physical poles occur sufficiently near to 
the physical pole to bias the estimates of critical point and exponent. The decision as to 
which approximants are sufficiently ‘defective’ in this way for their poles to be 
disregarded is somewhat subjective. 

Table 4 contains the mean estimates of zc,  p and y’ with ‘errors’ representing the 
mean deviation. Badly defective approximants have been excluded. Examination of 
table 4 reveals that: 

(i) estimates of zc from mo are an order of magnitude more precise than those from 
,yo; (ii) estimates of the critical exponents p and y’  are barely consistent between the 
two lattices; (iii) whereas for the simple cubic lattice estimates of zc from ,yo are 
consistent with those from mo, for the BCC lattice such is hardly the case. 

Table 4. Estimates of z,, P and y’ from poles and residues of Pade approximants to 
(d/dz) In mo(z)  and (d/dz) In x 0 ( z )  in three dimensions. 

~~ ~ 

Lattice Function Z C  P Y ’  

simple cubic mo 0~5786*0.0003 0.204 * 0.003 - 
x o  0.577 * 0.002 - 1.10 zk 0.04 

- BCC mo 0.6757 * 0.0004 0.212 * 0.003 
x o  0.672 * 0.002 - 1.06*0.04 

We first concentrate our analysis on the series for the spontaneous magnetisation on 
the simple cubic lattice, partly because of the results summarised in table 4. In addition, 
the series on the simple cubic lattice contains information from configurations of up to 
twelve overturned spins while that for the BCC lattice includes at most nine overturned 
spins. 

We have computed poles and residues of high degree, central Pad6 approximants to 
moP on the simple cubic lattice for a range of values of p indicated by table 4. The mean 
value of the poles of non-defective approximants, an estimate of zc, is plotted as a 
function of p in figure 3. Poles and residues of (d/dz) In mo are also plotted in figure 3. 
The error bars associated with the former curve indicate the mean deviation of the poles 
from the mean value. 

The results plotted in figure 3 differ qualitatively from those plotted in figure 2 (for 
the square lattice) in two important respects. In figure 2 the two trajectories for z,(p) 
are quite precisely parallel whereas for the simple cubic lattice they intersect. Secondly, 
for the square lattice the mean deviation of the estimates of zc from mO”* is essentially 
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L 0.5795 

P 

Figure 3. Relation between estimate of z, and p for the three-state Potts model on the 
simple cubic lattice using high-degree central Pad6 approximants. Squares locate poles and 
residues of approximants to (d/dz)ln m&);  the broken curve is the best straight line 
through these points. Circles locate mean values of poles to m ~ ” ’  while error bars indicate 
the mean deviation; the full curve is the best straight line through these points. 

independent of p in the range of interest, whereas for the simple cubic lattice the 
deviation depends strongly on p. The above two features, together with the estimate of 
p in table 4, allow us to make the estimates of 

= 0.5784 * 0.0003. 
and 

/3 =0*203*0*003. 

Accepting the above value of /3 the critical point of the BCC lattice can be obtained 
most precisely from Pade approximants to m b”’. Corresponding residues also yield 
estimates of B,. 

The initial susceptibility series have a number 4 of leading zeros. Thus an estimate 
of y t  is determined by adjusting y’ in ( ,yo/zq)”y’ until the mean value of the poles of 
Pad6 approximants to the above function coincides with previously obtained estimates 
of 2,. Residues then yield estimates of C:. 

From the simple cubic susceptibility we find y t  = 1.19*0.01 while for the BCC 

lattice we find y ‘ =  1.16*0.02. Our best estimates of all the above low-temperature 
critical properties are summarised in table 5 .  

The only previous series estimates of the critical properties of the three-state Potts 
model in three dimensions of which we are aware are those of Straley (1974). For the 
simple cubic lattice only Straley derived degree 24 low-temperature series expansions 
for the spontaneous magnetisation and initial susceptibility and high-temperature 
expansions for the zero- field specific heat and initial susceptibility of degrees 10 and 9 
respectively. His estimates were zc=  0.585, = 0.25 k0-05, y ‘ =  1 .350 .1  and y = 
0.9 f 0.1. These less precise estimates, based on less series information, are not 
inconsistent with our results. 

Next we analyse the high-field magnetisation series to determine the exponent S and 
amplitude D, for both lattices. We have used all four methods as described in 9 3. In 
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0 135 

0130 

contrast to the situation in two dimensions the exact critical point is not known, so that 
less weight is to be placed on method 4 results in three dimensions than in two 
dimensions. Note that both methods 2 and 3 now serve to obtain not only estimates of 8 
but also additional estimates of zc.  

0 577 

0 67L 
- v A I  a A Y e -  - 

I I 1 I I I l l  I 

Table 5. Best estimates of low temperature critical properties of the three-state Potts model 
in three dimensions. 

Lattice 2, P Y'  B,  c: 
simple cubic 0,5784 0,203 1.18 0.958 0.0232 

*0.0004 k0.004 k0.05 i0.003 k0.0006 

BCC 0.6747 0.203t 1.18 0.999 0,0164 
*0.0005 k0.05 k0.003 k0.0004 

t Value taken from analysis for simple cubic lattice 

0 

Figure 4. Radio of coefficients of -y(d/dy) In m(z,, y )  versus l / n  for the simple cubic 
lattice (squares) and the BCC lattice (circles). Triangles surround points common to both 
lattices. Input values for z ,  are indicated. 
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Figure 4 is a plot of the coefficients e,, of -y(d/dy) In m(y, z,)  versus l / n ,  for both 
the simple cubic and BCC lattices for two different values of zc for each lattice. For both 
lattices the estimates of zc by the criterion that the e,, be asymptotically constant are 
slightly but distinctly lower than the estimates obtained by analysis of the low- 
temperature series. 

The other three methods of analysis all result in extensive Pade approximant data 
which we do not reproduce. Instead, the results of all four methods of analysis are 
summarised in table 6 .  Error bars represent the mean deviation among estimates from 
various approximants neglecting any errors in the input (underlined) values. For 
method 3 error bars represent confidence limits derived from inspection of figure 4. As 
an overall best estimate we adopt 

S =7*0*0*3.  

Table 6. Estimates of the critical properties of the three-state Potts model on the 
three-dimensional lattices from analysis of high-field magnetisation series. Underlined 
numbers are input values. 

Lattice Method y,  2, s 

simple cubic 1 0.997 z t  0.005 0.5784 6.8 * 0.2 
2 1.ooo 0.5778+0.0005 6.9k0.2 
3 n.a. 06770i0.0005 7.4*0.3 
4 1.ooo 03784 6.8 * 0.2 

BCC 1 0.997 * 0,002 0.6747 7.0+ 0.1 
2 1.ooo 0.6740*0.0010 7.1 *0.1 
3 n.a. 0.6740 i0.0003 7.5 * 0.3 
4 1ooo 0.6747 6.8 + 0.2 

Estimates of D, for both lattices can be derived from the residues of Pad6 
approximants to m-”’ (method 4) in the usual way. We find 

D;S = 1*053*0*01 

and 

DF = 1.017*0*02. 

We note that the scaling relation y’  = @(S - 1) yields y‘ = 1*22* 0.05, in agreement 
with our direct estimates of y ’ .  

We have also re-analysed Straley’s high-temperature series using our presumably 
more precise value for the critical temperature. The series for the principal suscep- 
tibility, x, was raised to various powers, y, until the mean value of poles coincided with 
our estimate of the critical point, vC = 0.1955 (insteadof Straley’s uc = 0.1977), was best 
reproduced. In this way we estimate that y = 0.89 f 0.05, in agreement with Straley. As 
observed by Straley, the scaling relation y = y’  appears to be violated. This is rather 
puzzling as the estimates of 0, y’ and S do satisfy the appropriate scaling relation. 

The high-temperature series for the second susceptibility, x3 (Straley 1974) is very 
badly behaved and from Pad6 approximant analysis we can conclude little about its 
critical behaviour. 
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6. Summary and conclusions 

The method of high-field expansions has been adapted to be particularly suitable for the 
three-state Potts model. For the body centred cubic lattice nine complete high-field 
polynomials in the expansion of the free energy have been obtained, while for the 
simple cubic lattice eleven polynomials have been obtained. On the square lattice 
high-field polynomials of degrees ten and eleven have been added. Using the high-field 
polynomials, low-temperature series for the spontaneous magnetisation and initial 
susceptibility on the simple cubic and BCC lattices have been obtained for the first time. 

For the square lattice, because zc is known exactly, a very precise estimate of 
p = 0- 1064 has been found, together with somewhat less precise estimates of y’ and S .  
Both the direct estimates of S and the scaling estimate using the above estimate of p and 
the estimate of Zwanzig and Ramshaw for a strongly suggest that S = 15, as in the 
two-dimensional Ising model. If so, then using S = 15 and the above estimate of p 
scaling yields y = y ’  = 1.491 * 0.002 and a = a ’  = 0.296 * 0.003; both very close to the 
direct estimates and well within the error limits. 

On three-dimensional lattices the transition temperature is not known exactly, nor 
is it known whether the transition is first or second order. Assuming the transition to be 
second order, estimates of p, y’ and S satisfying with the scaling relation p(S - 1) = y’ 
can be found. Specifically p =0.203*0.004, S =7+0*0.3 and y ’ =  1-18*0.05. It is 
tempting to conjecture that S = 7 exactly. Certainly the value S = 5 ,  found exactly for 
the spherical model and approximately for the Ising, X Y  and Heisenberg models 
cannot be supported by the series evidence for the three state Potts model. 
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Appendix 

High-field polynomials for the three-state Potts model. 

Square lattice 

L~ = 2r4. 

Lz =4r6-4z7 - lor8. 

L3 = 1 2 ~ ~ + 2 4 2 ’ -  52~~O-642 l1 +82$2”. 

L4 = 2z8+48z10+ 1 0 8 ~ ”  - 2 3 0 ~ ’ ~  - 6 4 4 ~ ’ ~  +604214+ 9442’’ - 8 3 6 ~ ’ ~ .  

L5 = 162’O+ 162” + 1582”+ 5 3 6 ~ ’ ~  - 1 2 1 2 ~ ’ ~ - 4 3 4 4 ~ ’ ~  + 26702 1 6 +  13 2162 l7 

-65442”- 13 952~’~+944652~O. 

L6=42lo+ 104~’’+ 1 9 6 ~ ’ ~ + 3 6 8 ~ ’ ~ + 2 1 4 9 ~ ’ ~ - 5 5 8 0 ~ ’ ~ - 2 7  9882’’ 

+ 12 2 0 1 f ~ ’ ~ + 1 1 5  4 2 0 ~ ’ ~ - 8 6 4 4 ~ ” - 2 4 4 6 6 6 $ ~ ’ ’ + 6 2  3362” 

+208 6 4 0 ~ ’ ~ -  114 549fzZ4. 
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L7 = 442 l2  +402l3 +496214 + 1 6 0 8 ~ ' ~  +44216 +4224217-22 340~"-  160 6642 l 9  

+38 0 0 0 ~ ~ ' + 8 9 1  752z2'+220 2 9 2 ~ ~ ~ - 2 5 4 0  9 2 8 ~ ~ ~ - 6 1 8  7 4 4 ~ ~ ~  

+4290 816~"-406 464rZ6-3156 9 9 2 ~ ~ ~ +  1458 8 3 4 3 ~ ~ ~ .  

L8 = 1 2 ~ ' ~ + 3 5 2 ~ ' ~ + 6 4 0 ~ ' ~ +  1 7 8 8 ~ ' ~ + 9 4 0 4 . ~ ' ~ - 5 3 8 0 ~ ' ' - 2 7  500219-91 3 3 2 ~ ~ '  

-764 2 8 4 ~ ~ ~  -22 3 1 2 ~ ~ ~ + 6 1 6 1 8 5 2 ~ ~ ~ + 3 5 5 3  1 2 4 ~ ~ ~  

-22 159776z2'-15 513 044z26+49910544z27+24656632z28 

-72 726 2 0 8 ~ ~ ~ -  1984 704z3'+48 261 1 2 0 ~ ~ ' -  19 260 9 6 0 ~ ~ ~ .  

L9=2212+ 152z'4+160r'5+1982z'6+6344z'7+4008z'8+35 976z19-38 244z2' 

-407 7 7 6 ~ ~ l - 4 8 2  8 9 6 ~ ~ ~ - 2 7 1 2  4 4 8 ~ ~ ~ - 8 0 2  9 2 2 ~ ~ ~  

+37 177 3 0 4 ~ ~ ~ + 3 7  111 2 8 0 ~ ~ ~ - 1 7 0  963 8 1 6 ~ ~ ~ - 2 0 1 5 7 4  7 2 2 ~ ~ '  

+464 926 3 3 6 ~ ~ ~ + 5 2 7  506 682$~"-901846 9 1 2 . ~ ~ ~  

-664 857 3 1 2 ~ ~ ~ +  1202 720 9 3 8 $ ~ ~ ~ +  156 944 6 4 0 ~ ~ ~  

-744 180 7 3 6 ~ ~ ~ + 2 6 1 4 3 2  0 3 5 5 ~ ~ ~ .  

Llo = 60.2 1 4 +  242"+ 1272216+2728z 17+9064z "+43 1082 ''+ 1 1 8 4 ~ ~ ~ + 9 9 4 4 2 ~ ~  

-231 5 9 2 ~ ~ ~ - 3 0 8 3  3 4 0 ~ ~ ~ - 3 3 7 2  6 7 8 ~ ~ ~ - 3 6 1 6  3 2 8 . ~ ~ ~ +  189 7 1 2 ~ ~ ~  

+ 194 627 0 2 0 ~ ~ ~ + 2 9 5  499 7 8 8 ~ ~ ~ -  1160 333 0 4 8 . ~ ~ ~  

-2068 324 8 1 5 f ~ ~ ' + 3 7 4 2  358 7 2 4 ~ ~ ' + 7 0 8 1  4 7 4 4 8 2 ~ ~ ~  

-8421 032 4 4 8 ~ ~ ~ -  14 262 279 2 3 2 ~ ~ ~ +  15 158 492 1 0 8 2 ~ ~ '  

+ 15 416 334 5 9 2 ~ ~ ~ -  19 499 647 2 3 2 ~ ~ ~ - 4 3 9 9  319 0 4 0 ~ ~ '  

+ 11 559 174 1 4 4 ~ ~ ~ - 3 6 2 6  978 3 0 4 ~ ~ ' .  

L l l  = 1 6 ~ ' ~ + 7 1 6 2 ' ~  + 9 6 0 ~ ' ~  +7692z"+ 27 888z19+ 35 500r2'+203 8 4 0 ~ ~ '  

-57 524 .~ '~-  1226 0 0 8 ~ ~ ~ -  1894 2 4 0 ~ ' ~ -  16 715 6 4 8 ~ ~ '  

-23 407 1 0 4 ~ ~ ~ + 4 4  754 3 6 8 ~ ~ ~ + 8 7  970 556z2'+864 715 2 3 2 ~ ~ ~  

+ 1841 229 740~~O-698 874 0 4 0 ~ ~ '  - 17 797 643 3 4 8 ~ ~ ~  

+ 26 003 925 5 3 6 ~ ~ ~  + 76 898 566 3 8 0 ~ ~ ~  - 63 773 878 2 4 0 ~ ~ '  

-201 973 878 2 4 0 . ~ ~ ~ +  128 682 283 4 5 6 ~ ~ ~ + 3 4 1  191 214 9 7 6 ~ ~ '  

-236464 0 1 6 8 9 6 ~ ~ ~ - 3 2 9  153 510784~~'+310610333 6964' 

+ 99 404 160 O O O Z ~ ~  - 130 659 990 5 2 8 ~ ~ ~  + 5 1 220 453 5 6 2 h ~ ~ ~ .  

Simple cubic lattice 

L1= 2z6. 

L 2 = 6 ~ ~ ' + 6 2 ~ ~  -142". 

Ls = 3 0 ~ ' ~ + 6 0 ~ ' ~  - 1 1 4 ~ ' ~ -  1 4 4 ~ ' ~  + 170$~". 
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L4 = 6~16+202z18+498~19-810z20-2462~2 ’  + 1 9 2 6 ~ ” + 3 2 4 0 ~ ’ ~ - 2 6 0 4 ~ ’ ~ .  

L5 = 9 6 ~ ” + 9 6 ~ ’ ~ +  1 3 0 8 ~ ’ ~ + 4 4 6 4 ~ ’ ~ - 6 7 2 8 ~ ~ ~ - 2 9  664z2’+ 11 3 4 0 ~ ~ ~  

+77 296zZ7-29 472z2’-73 728zZ9+45 0 0 8 ~ ~ ~ .  

Lg= 36z2’+ 1 2 0 8 ~ ’ ~ + 2 2 9 2 ~ ’ ’ + 7 6 9 8 ~ ’ ~ + 3 6  126zZ7-52 0 6 2 ~ ’ ~ - 3 4 0  6 8 0 ~ ’ ~  

+31 674z30+1181 526z3*+108 966z3’-2195 0 2 4 ~ ~ ~  

+352 0 3 2 ~ ~ ~ +  1707 840z3’-841 6 4 2 ; ~ ~ ~ .  

L7 = 1 6 ~ ’ ~ + 8 0 4 ~ ~ ~ + 9 0 4 ~ ’ ~ +  11 952z2’+36 6 0 0 ~ ’ ~ + 4 0  O48z3O+223 5 6 0 ~ ~ ~  

- 368 6 6 4 ~ ~ ’ -  3624 4 2 4 ~ ~ ~  - 748 5 9 6 ~ ~ ~ +  15 976 3 6 8 ~ ~ ’  

+8035 8 8 0 ~ ~ ~ - 3 9  112 8 4 8 ~ ~ ~ - 1 5  589 920z3’+59 171 7 7 6 ~ ~ ~  

-525 9 8 4 ~ ~ O - 4 0  207 104z41 + 16 629 6505~~’ .  

Lg = 2zZ4+ 1 6 ~ ’ ~ + 6 4 2 ~ ’ ’ + 3 8 4 ~ ~ ~ +  11 832z30+26 2 5 6 ~ ~ ~  + 107 1 4 2 ~ ~ ~  

+ 433 2 1 2 ~ ~ ~  + 2 16 0 7 8 ~ ~ ~  + 475 7 4 6 ~ ~ ’  - 2897 1 9 0 ~ ~ ~  

-34 423 0 0 2 ~ ~ ~ -  19 806 420z3’+ 196 907 6 2 2 ~ ~ ~ +  184 497 792z40 

-581 180 3 2 2 ~ ~ l - 5 6 9  319 330z4’+ 1152 114 0 7 2 ~ ~ ~  

+ 770 888 0 7 6 ~ ~ ~  - 1543 192 5 4 4 ~ ~ ’ -  172 358 4 9 6 ~ ~ ~  

+ 959 588 7 3 6 ~ ~ ~  - 342 090 3 3 6 ~ ~ ’ .  

L9 = 482’’ + 48zZ9 + 19Oz3O + 384z31 + 13 848z3’ + 18 8 9 6 ~ ~ ~  + 137 4 5 4 ~ ~ ~  

+470 088z3’+953 0 6 0 ~ ~ ~ + 3 9 9 4  8 2 4 ~ ~ ~ +  1243 8 4 8 ~ ~ ’  

- 12 959 6 8 0 ~ ~ ~ - 3 3  501 960~~O-284 416 704z41 -287 126 802z4’ 

+ 2191 5 12 6 4 8 ~ ~ ~  + 3208 207 6 9 2 ~ ~ ~  -7656 444 1 0 4 ~ ~ ’  

- 12 631 262 5 1 4 ~ ~ ~  + 17 479 072 3 6 8 ~ ~ ~  + 26 999 873 088z4* 

-30 932 324 3 5 2 ~ ~ ~ - 3 0  024 324 576zS0+39 263 462 6 . 5 6 ~ ’ ~  

+8618 618 112z5’-23 163 091 968zS3+7257 873 464:~’~. 

Ll0=48z3”+936z3’+ 1 5 5 4 ~ ~ ~ + 8 2 8 6 ~ ~ ~ +  12 804z3’+216 4 0 4 ~ ~ ~ + 4 8 9  0 4 8 ~ ~ ~  

+ 1414 992z3’+6251 5 5 8 ~ ~ ~ + 9 1 9 3  644r4O+26 224 8 0 0 ~ ~ ’  

+886 276z4’-275 105 8 5 0 ~ ~ ~ - 4 9 2  347 6 8 8 ~ ~ ~ -  1951 437 2 5 6 ~ ~ ~  

-2845 414 1 7 6 ~ ~ ~ + 2 2  118 900 3 7 0 ~ ~ ~ + 4 6  574 159 8 7 6 ~ ~ ’  

-89 351 379 8 4 0 ~ ~ ~ - 2 2 8  171 735 598!~”+220 597 206 6 2 2 ~ ’ ~  

+627 831 627 228z5’-429 195 997 7 2 8 ~ ’ ~ -  1077 708 256 O O O Z ’ ~  

+ 757 314 335 63552’’ + 1045 377 232 7 0 4 ~ ’ ~  - 977 956 798 7 2 0 ~ ’ ~  

-318 568 501 248z5’+564451 547 1 3 6 ~ ’ ~ -  157 792 735 948:~~’. 

L11 =48z3’+ 1 4 1 6 ~ ~ ~ +  1 6 8 0 ~ ~ ~ +  16 1 4 4 ~ ~ ~ + 3 7  9 6 8 ~ ~ ~ +  190 950z3’+387 3 6 0 ~ ~ ~  

+2808 462z40+8854 O08z4l + 14 633 802z4’+63 884 3 2 8 ~ ~ ~  
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+93  224 O 5 8 ~ ~ ~ + 5 4  834 3 1 2 ~ ~ ~ - 2 4 6  325 3 0 2 ~ ~ ~ - 3 6 5 8  158 8 6 4 ~ ~ ~  

-6977 271 3 6 6 ~ ~ ~ - 9 3 2 5  587 3 8 4 ~ ~ ~ -  15 448 842 6 9 0 ~ "  

+205 400 169 432z5'+579 280 677 7 0 2 ~ ~ ~ - 9 2 6  336 543 7 3 6 ~ ~ ~  

-3565 427 509 344zs4+2215 002 988 7 0 4 ~ ~ '  

+ 11 983 233 128 6 6 4 ~ ~ ~ - 3 7 8 9  464 022 2 4 0 ~ ~ ~  

-26 312 202 402 5 2 8 ~ ~ ~ + 7 3 7 3  128 071 552zs9 

+3882 8637 786 7 2 0 ~ ~ ' -  16 477 939 592 4 4 8 ~ ~ '  

- 34 060 983 902 208z6'+ 23 859 198 565 3 7 6 ~ ~ ~  

+ 104 900 408 4 0 1 9 2 ~ ~ ~ -  13 865 358 69 2 3 5 2 ~ ~ ~  

- 3 499 207 747 77O&zb6. 

Body-centred cubic lattice 

L1= 2z8. 

L2 = 8.2 l4 +8Zl5 - 1 8 Z l 6 .  

L3 = 56z2'+ 1 1 2 ~ ~ ~  - 2 0 0 ~ ~ ~ - 2 5 6 ~ ' ~ + 2 9 0 $ ~ ' ~ .  

Lq = 24zZ4 + 5 5 2 ~ ~ ~ +  1 2 2 4 ~ ~ ~ -  1 9 4 4 ~ ~ ' -  5976zZ9+4392z3'+ 7 5 8 4 ~ ~ '  

- 5 8 6 0 ~ ~ ' .  

L5 = 2 4 ~ ~ ~ + 5 0 4 ~ ~ ' + 6 2 4 ~ ~ ~  +4588z3'+ 15 O 8 8 ~ ~ ~ - 2 4  2 8 8 ~ ~ ~ - 9 5  9 3 6 ~ ~ ~  

+33  7 9 6 ~ ~ ~ + 2 4 5  1 8 4 ~ ~ ~ - 8 6  2 0 8 ~ ~ ~ - 2 2 6  9 4 4 ~ ~ ~ +  133 5 7 4 5 ~ ~ ' .  

L6= 5 4 ~ ~ ' + 7 4 4 ~ ~ ~ + 8 1 6 ~ ~ ~ + 7 1 2 4 ~ ~ ~ +  17 6 6 4 ~ ~ ~ + 3 2  6 4 8 ~ ~ ~ +  149 008Z39 

-261 5 5 4 ~ ~ ' -  1514 0 4 8 ~ ~ ~ + 2 0 1 3 0 6 $ ~ ~ ' + 5 0 1 3  8 8 8 ~ ~ ~ + 5 9 3  0 3 2 ~ ~ ~  

-9116 309$z4'+ 1254 9 1 2 ~ ~ ~ + 6 9 1 3  1 5 2 ~ ~ ~ - 3 2 9 2  4 4 8 ~ ~ ~ .  

L7= 1 4 4 ~ ~ ~ +  1 7 4 4 ~ ~ ~ +  1 8 2 4 ~ ~ ~ +  12 948z4'+3O928z4'+86 832z4'+288 5 2 8 ~ ~ ~  

+223 O 5 6 ~ ~ ~ + 8 1 8  2 0 8 ~ ~ ~ - 2 6 3 4  0 2 4 ~ ~ ~ - 2 1 3 6 2 4 4 8 ~ ~ ~  

- 2701 7 6 4 ~ ~ ~  

+93  127 9 2 0 ~ ~ ~ + 4 4  689 320z5"-217 326 7 2 0 ~ ~ l - 9 2  352 0 4 8 ~ ~ ~  

+321 965 824zS3+3503 232zS4-214 061 568z5'+85 688 0 8 2 3 ~ ~ ~ .  

Lg = 8z38 + 3 9 6 ~ ~ ' + 4 8 z ~ ~  + 5 1 0 4 ~ ~ ~  + 5 1 6 0 ~ ~ ~  + 31 3 2 4 ~ ~ ~  +77  6 6 4 ~ ~ ~  

+ 195 0 7 2 ~ ~ ~ + 6 2 7  560z47+ 1057 8 7 6 ~ ~ ~ + 3 2 3 9  l l 2 ~ ~ ~ + 1 0 6 5  3 0 4 ~ ~ "  

-5381 424zs1-33 867 324zs2-255 991 l l 2 ~ ~ ~ - 1 1 9  162 2 9 6 ~ ~ ~  

+ 1556 983 3 9 2 ~ ~ ~ +  1352 897 1 6 8 ~ ~ ~ - 4 4 3 3  803 9 8 4 ~ ~ ~  

-4252 521 048zs8+8363 498 2 4 0 ~ ~ ~ + 5 8 6 1  162 2882" 

- 11 001 254 7 8 4 ~ ~ ~  - 1437 953 6 6 4 ~ ~ ~ + 6 7 2 0  219 6 4 8 ~ ~ ~  

-2321 129 7 6 0 ~ ~ ~ .  
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L9 = 48z4'+ 1 4 3 2 ~ ~ ~ + 4 4 8 z ~ ~ +  14 8 6 4 ~ ~ ~ +  16 8 0 0 ~ ~ ~ + 9 9  572z4'+230 2 8 8 ~ ~ ~  

+500 576r5'+ 1707 744z5'+3137 932z5'+8624 9 9 2 , ~ ~ ~  

+12 371 7 5 2 ~ ~ ~ + 2 1 2 8 3  5 0 4 ~ ' ~ -  16459 3 7 4 ~ ~ ~ - 2 4 9 4 0 4  3 5 2 ~ ~ ~  

-547 954 168z5'-2593 488 l l 2 ~ ~ ~ - 1 9 8 3  374 101fz6' 

+ 22 969 568 528z6'+31 440 400 4 1 6 ~ ~ ~ - 8 0  274 022 7 6 2 3 ~ ~ ~  

- 125 603 876 6 6 6 ~ ~ ~ +  173 934 353 920z6'+266 609 857 5 8 9 ; ~ ~ ~  

- 292 404 761 2 1 6 ~ ~ ' -  297 143 303 552z6'+ 366 590 492 3 3 0 3 ~ ~ ~  

+87 790633 984z7'-213 402 370048~"+64  835 717 6 8 8 ; ~ ~ ' .  
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